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NONLINEAR EFFECTS IN THE PROBLEM OF THE
BEAM ON A FOUNDATION WITH A MOVING LOAD*

C. R. STEELEt

Lockheed Palo Alto Research Laboratory

Abstract-The "steady-state" solution of the linearized equations for a beam on an elastic foundation (with no
damping) with a load moving at a certain velocity, referred to as the "critical" velocity, does not exist. In this paper,
suitable perturbation solutions are obtained for equations for the steady-state motion which include the geometric
and material nonlinearities. Secular terms are avoided by using the usual Poincare expansion for subcritical
load speeds and a Lindstedt expansion for supercritical speeds which may be extended to the critical speed when
the material nonlinearity dominates. However neither expansion is valid for the critical velocity when the geo
metric nonlinearity dominates, as for a very slender beam. For this situation, a successful expansion is found
which gives a solution that is mainly periodic (with the distance from the load) but with a slow monotonic decrease
in the envelope. The results are the first nonlinear corrections to the linear solutions for noncritical load speeds
and the solution for the critical speed which gives a strain which varies with the square root of the load. To in
dicate the plasticity effect, a simple solution for supercriticalload speeds for elastic-plastic beam and foundation
materials is also obtained. The solution consists mainly of the elastic waves but with a region of plastic flow of
the foundation behind the load and two points ofyielding of the beam in bending ahead of the load.
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INTRODUCTION

THE effect of moving loads on structures has been the subject of numerous investigatibns.
When the structure has a simple geometry and the load moves with constant velocity, a
relatively simple "steady-state" solution can be obtained, as in the investigation by Kenney
[1]. However, for the various beams on an elastic foundation, cylindrical shells, simply
supported plate strips, etc. for which steady-state solutions have been obtained, there are
certain critical velocities (usually small in comparison with the sonic velocities of the
materials). For subcritical velocities the response is localized; for supercritical velocities
monochromatic wave trains are generated ahead of and behind any discontinuities in the
moving load distribution. At the critical velocity a steady-state solution of the linear
equations does not exist unless damping is included as in [1].

Another approach is taken in [2] in which the transient solution (to the linear undamped
equations) is obtained for the finite beam. For a long beam on an elastic foundation, the
solution approaches the steady-state for noncritical load velocities. At the critical velocity,
the response increases with the square root ofthe distance of the load from the end. Thus the
linear equations indicate that large amplitude response is possible for a long beam on an
elastic foundation with minimal damping.

For this reason, equations which retain geometric and material nonlinearities are
considered in the present investigation. A steady-state solution is obtained for the critical
load velocity which indicates a response proportional to the square root of the load and
provides the limitation on the transient solution of the linear equations in [2].

The existence of such a nonlinear steady-state solution was indicated by Stoker in a
discussion of a somewhat analogous fluid flow problem ([3] p. 217). In addition the first
nonlinear effects for the noncritical load speeds are obtained in this investigation.

An interesting feature of the noncritical speeds is in the type of perturbation expansions
that are required. For subcritical speed, for which the linear solution is exponential, the
usual (Poincare) expansion is quite successful. For supercritical speed, for which the linear
solution is periodic, a Lindstedt expansion, discussed by Cesari [4], avoids secular terms.
However, when the geometric nonlinearity dominates, neither expansion is successful for
the critical speed, for which there is a secular solution to the homogeneous linearized
equations. An appropriate expansion is used which gives a solution that is mainly periodic
but with a slowly decreasing envelope.

For large load magnitudes, plasticity effects become important, particularly for the
supercritical load speed for which the elastic solution indicates many cycles of loading
for each beam element. Therefore a solution is obtained for the equations for small de
formations but elastic-perfectly plastic beam and foundation. The solution satisfies all
continuity conditions and seems to be reasonable. However, it may not be unique, although
attempts to construct other forms of solution were not successful. In its favor, the present
elastic-plastic solution approaches the elastic solution as the load decreases.

BEAM EQUATIONS

The equations for the plane motion ofan extensible elastica were obtained by Tadjbakhsh
[5]. To his equations terms for elastic restraint of a foundation are added. The sign con
vention is shown in Fig. 1. A point of the beam at (X, 0) before deformation is at the position
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(X +u, y) after deformation. The equilibrium equations are

a ~u
- ax(Tcos t/J+Q sin l/J)+k 3u+ pAafi" = 0

a aly
-(Q cos t/J - Tsin t/J)+k1y-kll + pA---;-y = 0
ax ut

~(aM_)= }It/J
ax as Q atl

in which

- 1[( au ) - 1 au ]t/J = tan 1+ax ax

~ = [( ~)l (~)lJt.ax 1+ax + ax

567
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The constants k b kl , and k3 give the stiffness properties of the foundation; k1 and k3 are
assumed to be nonzero and positive.
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FIG. I. Beam element.

The mass moment of inertia per unit of undeformed length is J. However, rotary inertia
is significant, certainly for the linearized moving load problem, only for load speeds of the
magnitude of the sonic speeds of the beam material, in which case shear deformation should
also be taken into consideration. The same should be true even when the first nonlinear
effects become significant. Hence, for this investigation, we take J = 0 and consider only
subsonic speeds (v ~ A).

The deformation measures are the strain

and the dimensionless curvature

as
e=--1

ax

t = rat/J/as

(ld)

(te)
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where r is chosen as the radius of gyration of the beam cross-section. The constitutive
relations from [5J for an elastica are

M =_r_aw
1+e or

oW r oW
T=---oe 1+e or

(If)

(lg)

where W is, from the variational formulation, an indeterminate function of e and r. The
selection of a suitable form for W can be guided by consideration of a direct simplistic
approach. A typical material has the stress-strain relation (f = Ee - E 1e3 +0(e5

) in which
EdE is quite large, say 0(103

), so that the material nonlinearity becomes important while
the strain e is still small. For a beam in combined bending and elongation the fiber stress
would be, if the geometric nonlinearities and the strains 0(e5

) are ignored,

where z is the distance from the centroid of the cross-section. The stress resultants are
then

T =f(f dz = EA [e-(e3 +3er2)EdEl

So an appropriate choice for W seems to be

{
e

2
(1 2[r2 E I 14 4 3E 1e

2
r
2
] E t e

4
}

W = EA 2+ +e) 2- 4EAr4r - 2E - 4£

which used in (1f) and (lg) gives

(2a)

(2b)

which coincide with the results of the direct approach when e2
, r 2 ~ 1. Hence (2a) and (2b)

will be regarded as appropriate constitutive relations for an elastica with constants selected
to relate the elastica with the material and shape properties of a three-dimensional beam.

In this investigation the solution is sought for a concentrated load N, normal to the
undeformed beam, moving at a constant velocity V. Hence the transverse and tangential
forces are discontinuous at the load

Qlx=Vt+ - Qlx=Vt- = N cos 1/1

71x=Vt+ -71x=Vt- = -N sin 1/1.

(3a)

(3b)
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We will seek the "steady-state" solution which is a solution depending only on the distance
from the moving load x = X - V t. Thus

y = y(x), u = u(x).

Since the present interest is in the first nonlinear effects, only the first nonlinear terms
will be retained in the equations. For normal loading ofa beam it iseasy to see that e = 0(,2)
-which, in terms of the dimensionless variables defined in Notation, gives y = 0(1'/2). Hence
the appropriate expansions are

e = y' + -!<I'/y + 0(1'/4)

t/J = 1'/' - [1'/'1" +-!{I'/')3J + 0(1'/5)

2t ,h = 1'/"-[I'/"(2y'+t<I'/,)2)+I'/'y"J+0(1'/5)

2t AM
-- = 1'/" -[1'/"1" +I'/'y" + (I'/yl'/" + ,11(1'/")3] +0(1'/5)
EAr

T
EA = y' + -!<1'/')2 + 0(1'/4)

2A2Q
EA = 1'/"'[1'/"'2(1" + (1'/')2) + 21'/"(y" + 1'/'1'/")+ I'/'y'" + ,11«1'/")3),] + 0(1'/5)

(4)

in which the primes denote differentiation with respect to ~. The equations (la) and (lb)
become

(A2_v2)y" - f3y = -MA2(1'/')2 +1'/'1'/"']' +0(1'/4)

1'/"" - [I'/NII(2y' + ~1'/')2) + 1'/"'(3y" + 81'/'1'/") + 1'/"(2y'" + (I'/"f) +Y""I'/' + ,11«1'/")3),,]

+ 2v21'/" + 1'/ _a1'/3 - 2A2[I'/'(y' +-!<I'/y)]' + 0(1'/5) = o.

(5a)

(5b)

The solution of (5) is sought for which 1'/ and yare bounded for I~I --+ 00, and for which
}', 1'/, 1'/', 1'/" are continuous at ~ = O. For the typical practical problem, the parameters A, a,
and ,11 are large in comparison with 1 while f3 is around 1. The load parameter d could, of
course, be of arbitrary magnitude. It would be expected that the linear theory would be
valid for sufficiently small d which should give a small amplitude of 1'/. Thus all the expan
sions are in powers ofd. After the formulas for the constants of the expansions are obtained,
the fact that A, a,,u ~ 1 is used for simplification.

LINEAR SOLUTION

When the load is sufficiently small d c:: 1, then the solution 1'/ should also be small.
The omission of the nonlinear terms of (5) gives

(6)
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For v < 1 the solution of (6) which is bounded for I~I -+ 00 is

A 1'1.,., = e - , SIR <P cos(J ~I cos cp - cp)
2(1- v4 )"!

where

(7a)

cp = cos-I[(I +vz)/2]+

The maximum curvature change is given by

(0 s cp s n/4)

(7b)
,.,"(0) A

T --- -------,--~._

o - 2+), - 4Jc(l-vz)+'

For v > 1, the complementary solutions of(6) are periodic. The unique steady-state solution
is obtained by either adding a small damping term, as in rI], or by considering the transient
solution for a semi-infinite beam, as in [2]. Both approaches indicate that the shorter
wavelength "wave train" is ahead of the load

where

W
a

= v[I-(l_[,-4)-!]+

w;; 1 = Wb = vel +(l-v- 4)+Jt ~ 2+[·

The maximum bending strain is given by

for ~ > 0

for ~ < 0

for [' ~ 2.

(Sa)

TO =
2+AWb

4Jc(v4 -1 )t·
(8b)

Thus v = 1 gives the "critical" load velocity at which no steady-state solution, bounded at
I~I -+ 00, of the linear equations exists. A steady-state solution always exists if a nonzero
viscous damping term is retained [IJ; the amplitude becomes large as the damping becomes
small. For the undamped case, the transient solution for the semi-infinite beam increases
in amplitude with the square root of the distance of the load from the beam end [2]. So
either approach to the linear problem leads to the possibility of arbitrarily large deforma
tions even for small values of A.

PERTURBATION SOLUTION FOR SUBCRITICAL SPEED

For subcriticalload speed v < 1 the solution of the nonlinear system (5) can be obtained
by the usual (Poincare) perturbation expansion. The solution is assumed to be expressible
in the form

,., = .1.1]0+.1.3
"'1 +A51]z+'"

)' = AZ)'I +A4)'z+'"

(9a)

(9b)

where .1.1]0 is the linear solution (7) and the 1]; an Yi are to be determined. The series (9) are
substituted into (5) and the coefficients of each power of A are equated to zero. Thus (5a)
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gives, for ~ > 0,

(A 2_v2)y'{ - {JY1 = -![A2(110)2 +'(11~]'

= _1e-2~sin<P[ _(A2 _v2 ) sin f{J

+ A2 sin(2~ cos f{J + f{J) - sin (2~ cos f{J + 3f{J)]

which has the solution

where

Since 11o(-~) = 11o(~), Y1(~) will be an odd function. Thus the complementary solution
has been chosen so that Y1(0) = O. For A ~ v, {J, the expression for the axial strain (2b) is

~ = d 2[y'1 +!(110)2]+ O(d4
)

= d2{Jt~oS2f{J e-;;'~/A[l +O(A -1)]+O(d4 )

8A SIO f{J

which satisfies the condition (3b). The equation for 111 follows from (5b)

11~" + 2V211'{ + 111 = 11~"(2Y'1 +H110)2) + ... + 3jt(11~)3)

+cx11~+2A2[110(y'1 +!(110)2))'

(10)

Since 11o(~) is even, 111(~) is also even, and must satisfy the condition 11'1(0) = O. Such a solution
is readily obtained with the result that the terms multiplied by the dominant large parameter
terms in the third derivative are

where C, the coefficient of the complementary solution, is selected to make the coefficient
of d 3

, obtained when the expression for Q(4) is substituted into the discontinuity condition
(3a), equal to zero
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The maximum curvature change is

C. R. STEELE

(12)

[
2..F ('1" )J= 't"o 1+'t"&( ")2 --}-2Y'1
'10 '10 ~=o

where 't"o is the linear result (7b).
As the speed approaches critical, v --+ 1, and e2i'" --+ i(l-v4)t+ 1, so that

n~"(O) --+ }..pt 9P+ 3a + Cn"'(O)
., 16(1-v2 ) -16(I-v4)t ,,0

For the second derivative the result is

'1~ (0) --+ - 1~.(2fJ)t2 t +pO(1)+aO(1) +C'1o(O)
I-v)

where the terms 0(1) are bounded as v --+ 1, so '1'{'(O) ~ '1'1(0) as v --+ I. Thus for v --+ 1

't"max -. 't"0[1 + 't"&(2A.3pt +6a}..2[(l- v2)j2]t +6p}..2)] (11)

Even for v nearer to zero than 1, the result (11) retains a qualitative validity. Thus for
o~ v :$ 0·9 the beam and foundation material nonlinearities, given by p and a, have about
the expected effect, i.e. for a given 't"o the increase in strain from the linear result is about
equal to the deviation in the actual from the linear stress-strain curve. The geometric
nonlinearities contribute the pt term to (11). For v 2:: 1 the expansion is invalid.

PERTURBATION SOLUTION FOR SUPERCRITICAL SPEED

For supercriticalload speeds v > 1, the Poincare expansion (9), in which the leading
term is the linear solution, yields secular terms in the successive terms. Secular terms
can be avoided by using a Lindstedt expansion, discussed by Cesari [4], which has the
feature that each term of the expansion has the same period. The appropriate expansion is

'1 = l\A 1 sin(w-l5)~+ 6,3A 3 sin 3(w-l5)~+ l\s As sin 5(w-l5)~+ .
y = 6,2A2sin2(w-l5)~+6,4A4sin4(w-l5)~+'" +Be- ICR1 + .

where w is the wavenumber of the linear solution (8a), i.e.

for ~ > 0

for ~ < 0

and l5 and the Ai are functions of the amplitude parameter 1'\ which have the expansions

l5 = l\2l5 1 +1'\4°2 + .,.

Ai = Aw + l\2 Ail + l\4 A i2 + ...
in which l5j and A ij are independent of l\. The leading term A lO is the coefficient of the
linear solution (8a)
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Since

(A?('02 +11'11''')' = _!!J.2AIoW3(A? -w2)sin 2(w- e5)e + 0(!!J.4)

the equation (5a) immediately gives

(A2_W2)W3 A2 wA2
A 10 10 O(A. - 2)

20 = - 2[4w2(A.2_v2 )+ P] = --8-+

!!J.2A 10

B = (4A.2x)'

The constant B is selected to satisfy the discontinuity condition (3b) in the tangential force,
which is

T
EA = Y' +!('1,)2 +0(!!J.4)

_ A2[AIOW2
AIow

2
4w

2
(W

2
_V

2
)+p 2 J:_( J')A lO -KI~IJ

- u 4 + 4 4w2(A.2 _v2)+ Pcos w.. sgn .. 4A.2 e

+0(!!J.4)

!!J.2 2 4
= 16(v4_1)[1+0(A.- )]+O(!!J.)

(13)

Hence the supercritical load speed produces an essentially constant axial force when A. is
large.

The substitution of (12) into (5b), with the use of (13), gives for the coefficient of
sin(w-e5)e

!!J.3A 3 w3 31X
!!J.A 10[(w-O)4 - 2v2(w-e5)2 + 1] ~o [3Jlw5 +w3- 2A.2w+ 0(1)] +0(!!J.5

) = 0

Using the expansion for e5 and the fact that w4
- 2V2W

2 + 1 = 0 gives

where 0(1) denotes terms bounded by a constant independent of A., IX, or Jl. The coefficient of
sin 3(w-e5)e from the substitution of (12) into (5b) gives

The exponential term in the expression for Y (12) induces a similar term in the expression
for '1. However, as in (13), such terms have a small effect.

The constant

A _{A llb

11 -

AlIa

for e > 0

for e < 0
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is determined from the condition that ,.( is continuous, i.e.,

(AllW-JlAlO+3A30W)b = (Allw-JlAlO+3A30W)a (14a)

and from the condition (3a) which gives

(AllW3_3J\AIOW2+27A30W3)b = (Allw3_3J\A\ow2+27A30w3)a (I4b)

in which the terms of higher order in IX, J1., and A. have been omitted. The solution for A\\b
and A lla is readily obtained from the pair of linear equations (14). For v ~ 2, for which
wt = W;;2 ~ 2v2, the result is especially simple

A 3 3
lOW 9 4 3 2 4

A llb = (2v 2)t[-sJ1.V +4A. +O(CW- )+0(1)]

A 3 3 12
lOW 9 4 I\. -4

A lla = (2V 2)1 [SIXV +4+0(J1.V )+0(1)].

The maximum curvature, at ~ = n/2(wb-J), is for v ~ 2

Irl max ~ 2~A.[.1A lOw2+.1 3
( - 2A lOJ\w+ A 11W2-9A30( 2)]b

~ rO{1 +rM~J1.A.2+ ::4+0(IXV-6)]} (15a)

where ro is the linear result (8b). The maximum deflection is at e = - n/2(wa- 15) which is,
for v ~ 2,

11max .1A10{ ( .1A 10 )2 11XA.
2

...1.
4 -6~}

21A. = - 2!-A. 1+ 21A. [2+ 8v4 + O(J.1V ~ (I5b)

Thus the nonlinearities due to large deformation, given by the parameter A., and due to
the softening beam material, given by J.1, and the softening foundation, given by IX, all tend
to increase the curvature and deflection over that indicated by the linear result. Note that
the foundation softening has little effect on the head wave-train (15a) while the material
softening has little effect on the trailing long wavelength, large amplitude wave train (15b).

PERTURBATION SOLUTION FOR CRITICAL SPEED

A Lindstedt expansion is valid for the critical speed v = I when the foundation non
linearities dominate the geometric nonlinearity, i.e. when k is real, where k is the quantity

k = (31X+3J1.-2A.2)1/4.

Instead of(12) the expansion is

11 = .11Al sin(I-J)e +.1t A3 sin 3(w-J)~ + ...

y = .1A 2 sin 2(1 - J)~ + ...

where

Ai = AiO+.11Ail+ .

15 = .1115 1 +.115 2 + .

(16)
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The leading constant A 10 is not known since no linear solution exists. However, the result
for the axial force is similar to (13)

where the discontinuity (3b) is in the term O(L\t). The substitution of (16) into (5b) gives
the coefficient of sin(1 - b)e

A3

L\tA lO[(1- bt - 2(1- b)2 + 1] - L\t ;0 [3Jl + 3cx - 2A.l +0(1)] +O(L\t) = O.

The difference in the expansions (16) and (12) is due to the vanishing of the term linear in b
for v = 1. The result is

for e> 0

for e< o.

The continuity of,,' requires that

which is satisfied by

A lOa = A 10b = A 10

A llb = blbA 10 = kAIo

A lla = blaA 10 = -kAIo·

The condition (3a) gives

which, with (17), gives

The maximum curvature is at e= n/2(l- bb)

(17)

An interesting situation develops when the geometric nonlinearity dominates, i.e. when

2A.2 > 3cx + 3Jl.

The Poincare type of expansion (9) gives secular terms and the Lindstedt expansion (12)
gives imaginary constants. Since the solution for v < 1 is exponential and for v > 1 is
periodic, some type of transitional behavior might be expected at v = 1.
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A suitable perturbation expansion which successfully avoids secular terms is

17 = (f+AJ!3+A s f S+ )sine+(BJ!3+BsfS+ ...)sin3e+ .,.

+(Ad2+A4f 4+ )cose+(B4f 4+ ...)cos3<:+ ... +e4171 + .. , (18a)

I' == C3f3+Csf5 + ... +e3Yl + .,.

+ (D2P +D4f 4+ ., .)sin 2~+(E4f4+ ...)sin 4;+ '"

+(DJ!3+ ...)cos2'+ ...

where Ai' Bi, Ci , and Di are constants and where

e
f == 1+eke

(18b)

(l8c)

in which e and k are real constants to be determined. The terms 1', and 17, are of exponential
behavior. For small e, (18) is oscillatory but with a slowly changing monotonic envelope.
The function f is convenient to use since its derivatives have a simple form

The expressions (18) are substituted into (Sa) and these results are obtained

k 12
C3 == -2p(A -1)

).2-1

D2 == 8().2 -1 + fJ/4)

16kD2().2 -1)-).2(3k + 2A2)+ 5k+ 2A2
D 3 == 8().2 -1 + fJ/4)

Furthermore 1'1 is the complementary solution of (Sa)

where F1 is a constant The axial strain is

T_ == 1" +!(17')2 +0(f4)
EA

f2 1+8D ( k+A).==e3Y'l+4+ 4 2pcos2e- 2kD2+2D3+T f3 sm 2e+0(f4)

== e3y'1 + ~2 +0(r 2)j2 cos 2e+k[1 +O()' -2)]f2 sin 2e+0(f4).



(19)
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The constant A 2 , which is unknown at this point, cancels from the leading term of the
coefficient of f3 sin 2e. Next the expressions (18) are substituted into (5b) with the results

k = [(2..1,2 -3tX-3jt)/32]t

A2 = _(2A,2_9tX+24jt)/64k

A 3 = 3A,4/40/3

B 3 = -3/3/210 -(tX+9jt)/28

A, 2F
''It = 1 fe-"~[sine+O(A,-l)].

2xe

Hence the first significant-terms in the expansion for '1 are

'1 ~ (f + AJ!3) sin(e + cp)+ Ad2 cos(e + cp)

where cp is a constant which provides an appropriate phase shift to satisfy the conditions at
e = 0, while f is given by (18c). When e is replaced by - e in (19), a solution of (5) which
vanishes as ~ --+ - 00 is obtained. Thus (19) with e replaced by lei satisfies the conditions of
boundedness and continuity of'1 and '1/1 (and y'). The continuity of'1' is satisfied if cp is chosen
so that '1'(0) = 0, i.e.

The continuity of y is satisfied by choosing

F1 = -C 3 -2D2(A 2+k)+D3 ~ kA,2/2/3.

The discontinuity condition (3a) gives

'1"'(0) ~ 2ke2 sin cp = /1/2.

Thus

and the leading terms in the expressions for the maximum curvature and strain are

e 2 ]
"t"max = 2t A, [1 +O(e )

= (/1/8kA.2 )t[1 +0(/1)]

(T/EA)max = e2/4 = /1/16k.

Thus the steady-state solution for the critical load speed indicates a response which varies
with the square root of the load in either situation of the geometric or material nonlinearities
dominant.

ELASTIC-PLASTIC SOLUTIONS

In this section the effects of plastic flow of the beam and foundation are considered.
For simplicity the effects of the geometric nonlinearities are neglected, only supercritical
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load speeds l' > 1 are considered, and the plastic flow of the beam and foundation are
considered separately.

Piastic foundation

For the elastic beam on an elastic-perfectly plastic foundation the equation is

1'(" +2v21]" +F(1]) = M(~) (20)

where the relation between the deflection and the foundation force is shown in Fig. 2 for a
cycle of loading and unloading. A solution has the behavior indicated in Fig. 3. Ahead of
the load is the short-wavelength elastic wave train. The plastic flow occurs a distance i1

behind the load in a region of length i2 -i1 . Behind the yielding region, the foundation has
a permanent deformation 1]1 to which is added the long-wavelength elastic wave train.
Thus the solution is

1]=

for ~ > 0

for i1 < ~ < 0
(21 )

The constants must be chosen so that 1], 1]', 1]", 1]'" are continuous, except for the discontinuity
at the load

The above solution already satisfies the condition of zero velocity at the end of yielding
1]'( -i2 ) = O.

F('1)

'10 ,,----/,.--
/

/

FIG. 2. Elastic-perfectly plastic foundation force. FIG. 3. Deformation of beam with supercritical load
speed on an elastic-plastic foundation.

The conditions at the load ~ = 0 give the relations

C6 = 0,

Cs =
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Continuity at ~ = -/2 is satisfied if

'10 (2 1)C8 = 2v2 wa - 2v2 .

This leaves five unknowns C3 , C4 , '1" 11 ,12 with which to satisfy the four continuity condi
tions and the condition that '1 = '10 at the start of yielding ~ = -II' The conditions that
'1 = '10 and that '1" is continuous give

-C3 sinwbl, +C4 coswb/ l = '1o+Cs sin wall

-C3 sin Wbl, +C4 cos Wbl, = ~; [i'1
V
02+CS2v2 cos ..j2v(l2-/d-Csw; sin Wal]

The right-hand sides must be equal which gives

2 1
W -

a 2 2

V sin wall = 1+ 2 v2 [1-cos..j2v(l2-/1)]
Wb-Wa

where

(22)

which is the ratio of the maximum deflection of the elastic solution (8) to the yield deforma
tion of the foundation '10' Thus for v ;:::: 2

sinw), = V-I

I, = ..j2vsin- 1 V-I.

Similarly from the continuity of '1' and '1'" comes the relations

(23)

and

W 4

vcoswal,=wa(l2-/d22( 2
b

2
V Wb-Wa)

X [I +2v' (w~-~) (wl-2.') sin[v'2v(l, -1,)1]
Wb ..j2v(l2- 1,)

= wa(l2 -/d[1 +O(v- 4
)].
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Thus for v :<: 2
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Wa(l2 -11) = Y cos Wall

= cot Wall = (y2 -l)"!.

The right-hand side of the above equation (22) and (23) may now be evaluated

C I C · I wa(l2- /d
3 cos W b 1 + 4 SIll W b 1 = '10 2 2 2 2

2v Wb(Wb -Wa)

X {1- 2v
2(w; -~) (2v

2
- w;) sin[ -.)2V(l2 -Ill ,}

W;-.)2V(l2 -/d
= '10(y2_l)tO(V- 5)

2 1
wa -22"

-C3 sin Wb/1 +C4 cos wb/1 = -'10 2 V2 {1-cos[-.)2v(/2-/d)}
Wb-Wa

= '100 (v- s).

Therefore, for v :<: 2, C3 and C4 are negligible

C3,C4 = '10(y2_1)t O(V- 5 ).

The constants C 1 and C2 are

Wa

= -C5[1 +O(v- 3)]
wb

C2 = C4 = '10(y2 -1)t O(v- 5
).

The only remaining constant to be evaluated is '11' From the condition that '1( -Id = '10'

'11 = '102 (l2 -/d2+Cs{1- cos[ -.)2V(l2 -IdJ)
4v

Thus the solution (21) for v :<: 2 is essentially

- (-.)~V)3sin(J2V~)

A . ~
---SIll-

-')2v -')2v
'1=

'10+'11- 4:02(~+/2)2

'11 + '10 cos[-.)~v(~+ 12)J

for ~ > 0

for -/1 < ~ < 0

(24)



(25c)

(25d)

(25a)

(25b)
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where

11 = J2v sin- 1y-1

12-11 = J2V(y2_l)t

fj.
y=--

J2v'l0

y2 -1
'11 = '10-2-·

Thus the bending wave ahead of the load is unaffected by the yielding of the foundation
behind the load.

For a comparison, if the impulse due to the moving load acting on each beam element
would act on all the beam elements simultaneously, then the beam will behave as a simple
mass on an elastic-plastic spring. The permanent deformation thus obtained is exactly the
same as in (24).

Plastic beam
The case of an elastic foundation with a beam, whose moment---eurvature relation is the

elastic-perfectly plastic relation shown in Fig. 4, is now considered. The equation is

(26)

Since a permanent curvature left in the beam by the load would cause unbounded dis
placement at e = - 00, the path in Fig. 4 for a given beam element must be a closed cycle.
Thus one is led to the type of solution indicated in Fig. 5 in which the yielding occurs at the
two points e = 11 and 12 • Plastic flow in an interval is not possible, since in the interval m
would be constant, leaving the solution of (26) for the interval with only two arbitrary
constants. Four arbitrary constants are required to satisfy continuity conditions. Since
rotary inertia is neglected, a discontinuity in curvature is permissible. For continuity of the
transverse shear, '1 m must be continuous. Thus at e = 11 and 12 the quantities '1, 'I', '11" are
continuous while

'1"(1t) = -mo

'1"(12) = -mO-m1

'1"(Ii) = mO -m1

'1"(11) = mo

'11"(12) = o.
The solution is

'1= C1cosWa(e-12)+C2COSwbR-12) for 11 < e < 12

C3cosWae+C4sinwae+Cssinwbe for 0 < e < 11

(27)

for e < 0
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/ m1

__....I./'-/_~>l2
C=l2

where the zero constants have been omitted. The conditions at ~ = 0 give

r
/

/
---------,01'----+--+---'1/"mO

FIG. 4. Elastic-perfectly plastic beam moment-eurvature relation.

N POINTS OF
PLASTIC FLOW

FIG. 5. DeformatIOn of elastic-perfectly plastic beam on an elastic foundation with supercritical load speed.

The conditions at ~ = Iz give

The conditions at ~ = II give the relations

WZ
1+ z a z[1+(1+0)coswb(/z-/I)-Ocoswa(lz-/tlJ

Wb-Wa

= O-(1+0)cos(wb(lz- /tl)

cpcoswbl l = -(1 +0) sin(wb(lz-I I »

(28a)

(28b)

(28c)
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where cp is the ratio of the maximum bending moment of the elastic solution (8) to the yield
moment

and e is

which involves the ratio mtlmo of the jump in curvature due to plastic flow to the curvature
at first yielding.

The three relations (28a, b, c) determine the three unknowns e, /1 , and 12 , Note that
when cp = 1 exactly, the solution (8) is obtained. Generally, for e> 1, the evaluation is
difficult; however for v ;::: 2, (28a) is

cp sin Whit = 1+0«1 +e)/v4).

Hence, if e ;$ 1,

(29a)

Then (27c) gives

(29b)

with which ecan be obtained from (28b)

e = (cp2 -1)/4

Since for v ;::: 2

~

cp = 2t mov

e = mtlmo

(29c)

(29c) provides a simple relation between the load magnitude, the yield curvature and the
plastic flow. The remaining constants C3 and C4 are O(mo/v2

). Thus the solution (26) is
virtually the same as (8) for ~ < o.

Plastic beam and plastic foundation

The load moving at a supercritical speed generates the long-wavelength train behind
and the short-wavelength train ahead of the load, according to the elastic solution (8).
The largest deflection occurs behind the load while the largest bending occurs ahead of the
load. Thus the plastic flow of the foundation, considered separately, occurs behind the
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load and does not affect the bending wave ahead of the load (24), while the plastic flow of
the beam is bending, considered separately, occurs ahead of the load but does not affect
the wave behind the load (26). Therefore if plastic flow of both beam and foundation are
considered simultaneously, the results (25) and (29) should not be significantly changed.

CLOSURE

From the preceding results the following conclusions are made.
The steady-state response varies with the square root of the load magnitude for the

critical load speed and so, for sufficiently small load magnitudes, is large in comparison
with the response for noncritical load speeds. Thus for the usual situation, the (undamped)
linear result for the transient behavior, as in [2J, should be valid until the magnitude
approaches the smaller of the linear steady-state solution with (small) damping, as in [1],
or the present nonlinear steady-state solution.

For large load magnitudes, the first nonlinear correction terms indicate a maximum
strain larger than the linear result for all (noncritical) load speed, at least for the usual
situation of positive values of IX and jJ., corresponding to softening elastic beam and found
ation materials. Stiffening materials, with IX and jJ. negative, tend to decrease the maximum
curvature.

For plasticity effects for supercritical load speeds, the permanent deformation of the
foundation is essentially the same as when the entire beam is instantaneously given an
impulse equal to N/V. No permanent bending deformation occurs. A closed cycle on the
moment-curvature diagram is transversed as the load approaches and then passes each
element of the beam.

Acknowledgements-A solution for a rigid-perfectly plastic beam, which led to the present elastic-plastic solution,
was suggested by G. B. Cline in informal discussion. Several errors in the basic equations were corrected by
the referees, one ofwhom brought to my attention Reference [5].
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Resume-La solution "regime permanent" des equations rendues lineaires pour une poutre sur une fondation
elastique (sans amortissment) avec une charge se depla~ant a une certaine vitesse, appelee vitesse "critique",
n'existe pas. Dans eet expose, des solutions de perturbation qui conviennent sont obtenus pour des equations
pour Ie mouvement a regime permanent qui comprennent des expressions non lineaires geometriques et relatives
au materiau. Des termes seculaires sont evites en utilisant l'expansion habituelle de Poincarre pour les vitesses
de charge inferieures aux vitesses critiques et une expansion de Lindstedt pour des vitesses superieures aux
vitesses critiques qui peuvent etre etendues a la vitesse critique quand la condition non lineaire du materiau
domine. Toutefois aucune des deux expansions n'est valide pour la vitesse critique quand la condition non
lineaire geometrique domine, comme dans Ie cas d'une poutre tres frele. Pour ce cas, une expansion satisfaisante
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se trouve qui donne une solution qui est principalement periodique (par rapport ilia distance de la charge) mais
avec un lent decroissement monotonique dans l'enveloppe. Les resultats sont les premierescorrections non lineaires
des solutions lineaires pour des vitesses de charge non critiques et la solution pour la vitesse critique qui donne
un effort qui varie avec la racine carree de la charge. Pour indiquer l'effet de plasticite, une solution simple pour
des vitesses de charge superieures aux vitesses critiques pour des materiaux pour poutres plastiques elastiques et
pour foundations est aussi obtenu. La solution consiste principalement dans les ondes elastiques mais avec une
region d'ecoulement plastique de la fondation derriere la charge et deux points de limite eIastique de la poutre
en pliant en avant de la charge.

ZusammenfllllSUllg--Die "Beharrungszustands"-Losung der linearisierten Gleichungen eines Balkens auf
elastischer Grundlage (ohne Dampfung) mit einer Belastung die sich mit einer Geschwindigkeit bewegt die als
"kritisch" bezeichnet wird, gibt es nicht. In dieser Arbeit werden entsprechende Storungslosungen erhalten,
die flir Gleichungen des Beharrungszustandes gelten, die geometrische und materielle Unregelmassigkeiten
enthalten. Sakuliire Ausdriicke werden vermieden, durch Verwendung der iiblichen Poincare Expansionen
fUr sub-kritische Lastgeschwindigkeiten, sowie Lindstedt Expansionen fiir iiberkritische Geschwindigkeiten
die in die kritische Geschwindigkeit ausegedehnt werden konnen, wenn di Material-Nichtlinearitat iiberwiegt.
Keine der Expansionen gilt aber, fUr die kritische Geschwindigkeit wenn die geometrische Nichtlinearitat
iiberwiegt, wie bei enem schlanken Balken. Fiir diesen Fall·wird eine Expansion gefunden, mit einer Losung
die hauptsiichlich periodisch ist (abhangig von der Entfernung der Last) aber mit einer langsamen monotonen
Abnahme der Hiillkurve. Die Resultate sind die ersten nichtlinearen Korrektume der Linearlosungen flir
nichtkritische Lastgeschwindigkeiten und Losung der kritischen Geschwindigkeit, eine Spannung mit der
Quadratwurzel der Last variert. Urn den Effekt der Plastizitat anzuzeigen wird auch eine einfache Losung der
iiberkritischen Lastgeschwindigkeiten elastoplastischer Balken und Grundlagen-Materialien erhalten. Diese
Losung besteht hauptsachlich aus den elastischen Wellen, aber der plastische Bereich der Grundlage ist hinter
der Belastung und die zwei Fliesspunkte des Balkens in Biegung sind vor der Belastung.

A6cTpaKr-"YCTOA'lHBoe" peweHHe JIHHeapH30BaHHLIx ypaBHeHHA AIDI 6aJIKH Ha ynpyroMo CHOBaHHH
(6e3 .neMn4JHpOBaHHSI) C rpY30M, ABHlICYIl.lHMCSl c HeKoTopoA CKOpOCTLIO, OTHeceHHoe KaK "KPHTH'lecKaSl"
CKOpOCTb, cosepweHHo He B03MOllCHO. B 3TOA pa60Te nOJIy'leHO YAOBJIeTBOpHTeJIbHOe peweHHe B03MYUleHD
AIDI ypaBHeHHA YCToArrnBOCTH ABHlICeHHSI, KOTopLIe 3aKJIIO'laIOT reoMeTpH'leCKHe H MaTepHaJIbHLIe
HeJIHHeAHOCTH. YAaJIOCb 060ATH seKoBLIe 'lJIeHLI HCnOJIb3YSl 06hl'lHbIe pa3JIOllCeHHSI TIyaHKape AIDI
CKopOCTeA HHlICe KpHTH'lecKOA, a pa3JlOllCeHSIe JIHH,uCTeATa AJISI CKopocTell: CsepXKpHTH'lecKHX, KOTopLIe
MoryT 6LITb pacwHpeHbI Ha KpHTH'lecKYIO CKOpOCTh, B cJIy'lae KorAa npe06JIa,uaeT MaTepHanbHall
HeJIHHeAHOCTb. TeM He MeHee HHKaKHe pa3JIOllCeHHSI HeBallCHhle AJIli KpHTH'lecKHX cKopOCTeA, BcJIy'lae Kor,a,a
npe06JIaAaeT reOMeTpH'lecKall HeJIHHeAHOCTb, a TaKlICe AJIlI O'leHb rH6KoA 6aJIKH. B 3TOM cJIY'lae HaitAeHLI
YAOBJIeTBOpHTeJIbHhle pa3JIOllCeHHlI, KOTophle AalOT, B OCHOBHOM, nepHOAH'lecKHe peweHHlI (JIpU paccTollHH
OT rpY3a), HO C MeAJIeHHblM YMeHhweHHeM Ha orH6alOll.\eA. Pe3YJIbTaTbi SlBJIlIlOTCll nepBoA HeJIHHeAHOA
nonpaBKoA JIHHeAHblx peweHHA AJIlI cKopoCTeA c HeKpHTH'lecKoA HarpY3KoA, a TaKlICe AJIlI peweHHlI
KpHTH'lecKOA CKOpOCTH, KOTopall BbI3blBaeT nepeMeweHHe, H3MeHlIIOIUeecli c Ksa,upaTHhIM KopHeM Harpy3KH.
):{JIli YKa3aHHlI nJIaCTH'lecKoro 34J4JeKTa, nOJIy'leHO TaKlICe npOCToe peweHHe, KacalOIUeecll cKopocTeA
cBepXKpHTH'lecKoA Harpy3KH AJIlI ynpyrOnJIaCTH'lecKoA 6aJIKH HMaTepHaJIOB OCHOBaHHlI. PeweHHe COCTOHT,
rJIaBHblM 06pa30M, H3 ynpyrHx BOJIH, HO C pail.oHoM nJIaCTH'lecKoro Te'leHHlI OCHOBaHHlI 3a Harpy3Koil. H
AByX npe'leJIOh TeKy'lecuI 6aJIKH, npH H3rH6e, ,uo Harpy3KH.


