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NONLINEAR EFFECTS IN THE PROBLEM OF THE
BEAM ON A FOUNDATION WITH A MOVING LOAD*

C. R. SteeLE}

Lockheed Palo Alto Research Laboratory

Abstract—The *‘steady-state’ solution of the linearized equations for a beam on an elastic foundation (with no
damping) with a load moving at a certain velocity, referred to as the *‘critical” velocity, does not exist. In this paper,
suitable perturbation solutions are obtained for equations for the steady-state motion which include the geometric
and material nonlinearities. Secular terms are avoided by using the usual Poincaré expansion for subcritical
load speeds and a Lindstedt expansion for supercritical speeds which may be extended to the critical speed when
the material nonlinearity dominates. However neither expansion is valid for the critical velocity when the geo-
metric nonlinearity dominates, as for a very slender beam. For this situation, a successful expansion is found
which gives a solution that is mainly periodic (with the distance from the load) but with a slow monotonic decrease
in the envelope. The results are the first nonlinear corrections to the linear solutions for noncritical load speeds
and the solution for the critical speed which gives a strain which varies with the square root of the load. To in-
dicate the plasticity effect, a simple solution for supercritical load speeds for elastic-plastic beam and foundation
materials is also obtained. The solution consists mainly of the elastic waves but with a region of plastic flow of
the foundation behind the load and two points of yielding of the beam in bending ahead of the load.
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INTRODUCTION

THE effect of moving loads on structures has been the subject of numerous investigations.
When the structure has a simple geometry and the load moves with constant velocity, a
relatively simple ‘‘steady-state’ solution can be obtained, as in the investigation by Kenney
[1]. However, for the various beams on an elastic foundation, cylindrical shells, simply
supported plate strips, etc. for which steady-state solutions have been obtained, there are
certain critical velocities (usually small in comparison with the sonic velocities of the
materials). For subcritical velocities the response is localized ; for supercritical velocities
monochromatic wave trains are generated ahead of and behind any discontinuities in the
moving load distribution. At the critical velocity a steady-state solution of the linear
equations does not exist unless damping is included asin[1].

Another approach is taken in [ 2] in which the transient solution (to the linear undamped
equations) is obtained for the finite beam. For a long beam on an elastic foundation, the
solution approaches the steady-state for noncritical load velocities. At the critical velocity,
the response increases with the square root of the distance of the load from the end. Thus the
linear equations indicate that large amplitude response is possible for a long beam on an
elastic foundation with minimal damping.

For this reason, equations which retain geometric and material nonlinearities are
considered in the present investigation. A steady-state solution is obtained for the critical
load velocity which indicates a response proportional to the square root of the load and
provides the limitation on the transient solution of the linear equations in {2].

The existence of such a nonlinear steady-state solution was indicated by Stoker in a
discussion of a somewhat analogous fluid flow problem (/3] p. 217). In addition the first
nonlinear effects for the noncritical load speeds are obtained in this investigation.

An interesting feature of the noncritical speeds is in the type of perturbation expansions
that are required. For subcritical speed, for which the linear solution is exponential, the
usual (Poincaré) expansion is quite successful. For supercritical speed, for which the linear
solution is periodic, a Lindstedt expansion, discussed by Cesari [4], avoids secular terms.
However, when the geometric nonlinearity dominates, neither expansion is successful for
the critical speed, for which there is a secular solution to the homogeneous linearized
equations. An appropriate expansion is used which gives a solution that is mainly periodic
but with a slowly decreasing envelope.

For large load magnitudes, plasticity effects become important, particularly for the
supercritical load speed for which the elastic solution indicates many cycles of loading
for each beam element. Therefore a solution is obtained for the equations for small de-
formations but elastic—perfectly plastic beam and foundation. The solution satisfies all
continuity conditions and seems to be reasonable. However, it may not be unique, although
attempts to construct other forms of solution were not successful. In its favor, the present
elastic—plastic solution approaches the elastic solution as the load decreases.

BEAM EQUATIONS

The equationsfor the plane motion of an extensible elastica were obtained by Tadjbakhsh
[5]. To his equations terms for elastic restraint of a foundation are added. The sign con-
vention is shown in Fig. 1. A point of the beam at (X, 0) before deformation isat the position
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(X +u, y) after deformation. The equilibrium equations are

0 ) o%u
—W(Tcos ¥+ Q sin ¢)+k3u+pAW =0 (1a)
d ) 3 d%y
a—X(Qcosw—Ts1nl//)+k1y—k2y +pA67:0 (1b)
ds [oM ) Xy
—_— = _— 1
ax( s 9 =% (le)

in which

oul~!ou
— tap-1 oy
Y = tan [(H_E?X) BX:I
ds 1+6u)2+ oy\?|*
ax x| "\ox| |-
The constants k,, k,, and k; give the stiffness properties of the foundation; k; and k; are
assumed to be nonzero and positive.

FiG. 1. Beam element.

The mass moment of inertia per unit of undeformed length is J. However, rotary inertia
is significant, certainly for the linearized moving load problem, only for load speeds of the
magnitude of the sonic speeds of the beam material, in which case shear deformation should
also be taken into consideration. The same should be true even when the first nonlinear
effects become significant. Hence, for this investigation, we take J = 0 and consider only
subsonic speeds (v < A).

The deformation measures are the strain

Os

=21 (1d)

and the dimensionless curvature

T = roy/os (le)
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where r is chosen as the radius of gyration of the beam cross-section. The constitutive
relations from [5] for an elastica are
r ow
- (1)
l+e 01

=% 11e (lg)

where W is, from the variational formulation, an indeterminate function of ¢ and 1. The
selection of a suitable form for W can be guided by consideration of a direct simplistic
approach. A typical material has the stress—strain relation ¢ = Ee— E e+ 0(e®) in which
E,/E is quite large, say O(10%), so that the material nonlinearity becomes important while
the strain e is still small. For a beam in combined bending and elongation the fiber stress
would be, if the geometric nonlinearities and the strains O(e°) are ignored,

o = E(e+1z/r)—E (e +12/r)}
where z is the distance from the centroid of the cross-section. The stress resultants are

then
E\l, E,
M =jaz dz = EAr[ir—EAr4r3—3fe2'c

T

ja dz = EA [e—(e3+3e12)E1/E:|.

So an appropriate choice for W seems to be

e? 2 E,I 3E,e%1?| E,e*
W= EA {4+e T E1la o 2 jl_ 1 }
{ i+ )[2 sEA* T 2E 4E
which used in (1f) and (1g) gives
E.I 3E.e’t
M= EAr(1+e)l:‘r—E:1r‘:r3— Ilf ] (2a)
Ei;_ 3E1 ., Ej ]
T = EA[ E —e(1+e)’t +2EA 4(1+e) (2b)

which coincide with the results of the direct approach when e, 7 < 1. Hence (2a)and (2b)
will be regarded as appropriate constitutive relations for an elastica with constants selected
to relate the elastica with the material and shape properties of a three-dimensional beam.

In this investigation the solution is sought for a concentrated load N, normal to the
undeformed beam, moving at a constant velocity V. Hence the transverse and tangential
forces are discontinuous at the load

Olx=vi+ —Qlx-vi— = Ncosy (3a)
Nx=vi+ —Tx=yi- = —Nsiny. (3b)
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We will seek the “steady-state” solution which is a solution depending only on the distance
from the moving load x = X —Vt. Thus

y = y(x), u = u(x).

Since the present interest is in the first nonlinear effects, only the first nonlinear terms
will be retained in the equations. For normal loading of a beam it is easy to see thate = O(t?)
.which, in terms of the dimensionless variables defined in Notation, gives y = O(1?). Hence
the appropriate expansions are

e =9 +3(n)+0(n*
Y =n'—[n"y +30')’1+00°)
2 = " ="y + 3+ 1y 1+ 0(n)

2*2'M " "ot " N2 m3 5

Ay =" ="y +0y" + (') n" + uin")’ 1+ O(n°)
T 3y + 0 @)
EA 2

222Q

1 = 120 )N+ 207" ) 'y + YY1+ 0t)

in which the primes denote differentiation with respect to . The equations (la) and (1b)
become

(A2 —vpy" =By = —H22('Y +n'n"] +On*) (5a)
" =" 2y +30)) 40" Gy + 80" ) + "2y "))+ + ("))

5b

+20%n" +n—an>=22207'(y' + 1)) +0(n*) = . b)
The solution of (5) is sought for which n and y are bounded for |[£] — o0, and for which
7,1, ', n” are continuous at £ = 0. For the typical practical problem, the parameters 4, a,
and pu are large in comparison with 1 while f is around 1. The load parameter A could, of
course, be of arbitrary magnitude. It would be expected that the linear theory would be
valid for sufficiently small A which should give a small amplitude of #. Thus all the expan-
sions are in powers of A. After the formulas for the constants of the expansions are obtained,
the fact that A, a, u > 1is used for simplification.

LINEAR SOLUTION

When the load is sufficiently small A < 1, then the solution 5 should also be small.
The omission of the nonlinear terms of (5) gives

y = O(n®)

6
n/u/+202r’u+’1 — O ( )
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For v < 1 the solution of (6) which is bounded for [¢] — oo is

A

= me":'“"“’cos(lﬂ cos @ — @) (7a)

n

where
@ = cos [(1+0?)2]} 0 <o <n/M)
The maximum curvature change is given by

’1//(0) _ A
2 41—

T = (7b)
Forv > 1, thecomplementary solutions of (6) are periodic. The unique steady-state solution
is obtained by either adding a small damping term, as in |1 ], or by considering the transient
solution for a semi-infinite beam, as in [2]. Both approaches indicate that the shorter
wavelength “wave train’’ is ahead of the load

A —w; ! sin wyé for ¢>0
n=5 7 13% { . (8a)
2% -1) —~wy tsinw,E for E<0
where
w, = [1—(1—p~ 4}
w; ' =, =v[1+(1—v "%} x 2% for v 22
The maximum bending strain is given by
n"(n/2) 2*Aw,
= = . 8b
o 20 4t (8b)

Thus v = 1 gives the “‘critical’” load velocity at which no steady-state solution, bounded at
|&] = oo, of the linear equations exists. A steady-state solution always exists if a nonzero
viscous damping term is retained [ 1] ; the amplitude becomes large as the damping becomes
small. For the undamped case, the transient solution for the semi-infinite beam increases
in amplitude with the square root of the distance of the load from the beam end [2]. So
either approach to the linear problem leads to the possibility of arbitrarily large deforma-
tions even for small values of A.

PERTURBATION SOLUTION FOR SUBCRITICAL SPEED

For subcritical load speed v < 1 the solution of the nonlinear system (5) can be obtained
by the usual (Poincaré) perturbation expansion. The solution is assumed to be expressible
in the form

= Ao+A%n +A%,+ (9a)
y =A% A+ (9b)

where An, is the linear solution (7) and the #; an y, are to be determined. The series (9) are
substituted into (5) and the coefficients of each power of A are equated to zero. Thus (5a)
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gives, for £ > 0,
(A% =W —Bys = —3[A2(no) + g

_%e—zs‘sinw[_(,{Z__vZ) sin 1)

I

+ A% sin(2¢ cos ¢ + @) —sin (2¢ cos ¢ + 3¢)]
which has the solution
(A2—v?)sin @
(4 sin® (4> —v?)— )
/‘{ZCiw _e3iw

24e* (12~ vH)+ p)

[ —Zésintp_e—x.:]

118 = 2

[ 2|‘e'“’.§_e—x;]

+S

where

x = [B/(22— ")}

Since no(— &) = no(€), y,(€) will be an odd function. Thus the complementary solution
has been chosen so that y,(0) = 0. For 1 > v, 8, the expression for the axial strain (2b) is

T
51 = A0+ 500+ 089

_ A’Bicos’e o Pl

-1 4
8sing [1+0(A~ Y]+ 0(A% (10)

which satisfies the condition (3b). The equation for , follows from (5b)
MY+ 20y = 30+ 3ulr))
+and +227[no(yy +2(n0)))
Since n4(£)iseven, n,(£)isalso even, and must satisfy the condition #,(0) = 0. Such a solution

isreadily obtained with the result that the terms multiplied by the dominant large parameter
terms in the third derivative are

" ABtcospcos3p 9u ie"2io(2e2 —1)2  i9ebi®
O = ————5—+%3— Zie T 0cdiv
32sin“ @ 4 4(e**—1) 9e*¢—1
o 3ie " 2ie(2e%ie — 1) 3i
_@ — _ _ ‘ C " 0
2 { K1) gesw—q T M)

where C, the coeflicient of the complementary solution, is selected to make the coefficient
of A%, obtained when the expression for Q (4) is substituted into the discontinuity condition
(3a), equal to zero

Cno(0) = [ —n7 +Cng +n52y1 +16y1 + 3une)*ne 1z =o-
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The maximum curvature change is

1 " " 4 i
Tmax = T0) = 2—1}}:{5% + A%y =162y =0

2'12 r’u
=1 1+rz-—;—(~—}-——2y’ H
0{ 0(']0)2 No ! =0

where 1, is the linear result (7b).
As the speed approaches critical, v — 1, and e?* — i(1—v*)* + 1, so that
At 9u+3a

16(1—v?) 16(1— 0%y

n1'(0) » ~ +Cno(0)

For the second derivative the result is
e
16(1 —v?)*
where the terms O(1)are bounded asv — 1,s017(0) » n7(0)asv — 1, Thusforv — 1
Tomax = To[ 1 +73(243 % + 6aA2[(1 —v2)/2]F + 6pA%)] (1)

Even for v nearer to zero than 1, the result (11} retains a qualitative validity. Thus for
0 < v < 09 the beam and foundation material nonlinearities, given by x and a, have about
the expected effect, i.e. for a given 1, the increase in strain from the linear result is about
equal to the deviation in the actual from the linear stress—strain curve. The geometric
nonlinearities contribute the f* term to (11). For v > 1 the expansion is invalid.

n10) - +10(1)+a0(1)+ Cro(0)

PERTURBATION SOLUTION FOR SUPERCRITICAL SPEED

For supercritical load speeds v > 1, the Poincaré expansion (9), in which the leading
term is the linear solution, yields secular terms in the successive terms. Secular terms
can be avoided by using a Lindstedt expansion, discussed by Cesari [4], which has the
feature that each term of the expansion has the same period. The appropriate expansion is

n = AA, sin{w—38)¢+ A%A; sin 3w —8)E + A3 A sin S{w—8)E+- -
y = A*A, sin 2(w —~8)E+ A*A, sin M — )¢+ -+ + Be 1l 4 - 12
where w is the wavenumber of the linear solution (8a), i.e.
W, for £>0
¢ ={ @, for £<0
and é and the A, are functions of the amplitude parameter A which have the expansions
5 =AM, +A%,+ -
Ay = A +A%A; + A4+ -

in which §; and A;; are independent of A. The leading term A, is the coefficient of the
linear solution (8a)
Ajow = —[200* -1 %,
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Since
A2 +n'n"y = —A?A2,03(A% — @?) sin 2{w—8)¢ + O(AY)
the equation (5a) immediately gives
(A2 - (Dz)waA%o _ wAl,
A40?(A2—v?)+p] 8
A4,
T @)

The constant B is selected to satisfy the discontinuity condition (3b) in the tangential force,
which is

Azo = +O(l_2)

_T_-—’ Lp)? 4
=1 = VbR oY)

_ a2 Algw?  A}yw? 4o (w?—vP)+ B
4 4 GG )1 B
+0(A%)

2

_ Aso —xi
cos 2w —(sgn &) YE e

(13)

- -2 4
Hence the supercritical load speed produces an essentially constant axial force when 4 is
large.

The substitution of (12) into (5b), with the use of (13), gives for the coefficient of
sin(w — 8)¢

3A3 3
AAlo[(w—5)4—202(w_6)2+1]_A 10

4 [3pw5+2—)“5—2/12w+0(1)]+0(A5) =0

Using the expansion for é and the fact that w* —2v?w? +1 = 0 gives

222w* — 3a—3uw® +0(1)
0y = 2_ .2
16c(w* —v*)

where O(1) denotes terms bounded by a constant independent of 4, «, or . The coefficient of
sin 3(w— 8)¢ from the substitution of (12) into (5b) gives

—9pw® —a+0(1)

Ayo = .
307 4810* — 1802 w? + 1)

The exponential term in the expression for y (12) induces a similar term in the expression
for n. However, as in (13), such terms have a small effect.
The constant

Au:{

Aia for £€<0
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is determined from the condition that »’ is continuous, i.c.,
(A 10 —01A,0+3A430), = (A0 =614+ 3A43,0), (14a)
and from the condition (3a) which gives
(A 03 =38,A,00% +27A4;500°), = (4,03 —35,4 00> +27450°), (14b)

in which the terms of higher order in a, x4, and A have been omitted. The solution for 4,,,

and A,,, is readily obtained from the pair of linear equations (14). For v 2 2, for which
w? = w; ? x~ 2%, the result is especially simple

A}ow?

Ay = W

A}ow? 22

Alla = W[%av4+z+0(uv'4)+0(l)]

[ —guv* +24% + O(aw ™4+ O(1)]

The maximum curvature, at £ = n/2(w,—90), is forv = 2

1
o —— E[AAxowz +A3(=24,00,0+ A 0% —94;,0%)),

14
X 1, {1 +1:(2,[-23-u/12+§i+ 0(ow'6)]} (15a)
where 1, is the linear result (8b). The maximum deflection is at £ = —a/2(w, — &) which is,
forv 2 2,
Nmax AA,, AA,o Har A -6
Amax A 15b
2% 2*,1{”( 2*1) 2 Tga oW (155)

Thus the nonlinearities due to large deformation, given by the parameter 4, and due to
the softening beam material, given by g, and the softening foundation, given by o, all tend
to increase the curvature and deflection over that indicated by the linear result. Note that
the foundation softening has little effect on the head wave-train (15a) while the material
softening has little effect on the trailing long wavelength, large amplitude wave train (15b).

PERTURBATION SOLUTION FOR CRITICAL SPEED

A Lindstedt expansion is valid for the critical speed v = 1 when the foundation non-
linearities dominate the geometric nonlinearity, i.e. when k is real, where k is the quantity

k = Ga+3u—21%)%4.
Instead of (12) the expansion is
n = A4, sin(1 — )¢+ A¥Aysin 3w —d)E+ ...
y=AA,sin2(1-38)¢+ ... (16)
where
Ay = A +AT A+ ..
=AW +A5,+ ...
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The leading constant A, is not known since no linear solution exists. However, the result
for the axial force is similar to (13)
T A4},
EA 4

[14+0(A7%)]+0(AY)

where the discontinuity (3b) is in the term O(A?). The substitution of (16) into (5b) gives
the coefficient of sin(1 — 8)¢

A3
A4 o[(1 —6)*—2(1-8)*+1] —A*—412[3/1+3a—2112 +0(1)]+ 0(A%) = 0.

The difference in the expansions (16) and (12) is due to the vanishing of the term linear in §
for v = 1. The result is

5 {6“, = kAlOb fOI‘ é > 0
v 610 = _kAloa fOI' é < 0.
The continuity of #' requires that

[A*A,0+ A4y —6,A10)]s = [A* A0+ A(A 1 —6,410))a

which is satisfied by
Atoa = Ajor = A1o
Ay = 84,4,y = kA, (17
Ay, = 01,4, = —kA2,.

The condition (3a) gives
~[A%, 0+ A(A;, —38,4,0)],+[A2A 0+ A(Ay; — 38,1 410)], = A

which, with (17), gives
Ao = —(kH)~1

The maximum curvature is at ¢ = n/2(1 —6;)

A\t A\t
e = +
8,12k) [”(sm) 2 Ak+0(A)].

An interesting situation develops when the geometric nonlinearity dominates, i.e. when

|1:|max =

222 > 30+ 3.

The Poincaré type of expansion (9) gives secular terms and the Lindstedt expansion (12)
gives imaginary constants. Since the solution for v < 1 is exponential and for v > 1 is
periodic, some type of transitional behavior might be expected at v = 1.
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A suitable perturbation expansion which successfully avoids secular terms is

n=+As 3+Asf°+ .. )sinE+(Bsf3+Bsf5+ .. )sin3¢+ ...
F(AyfPH A S+ . JcosE+(Byf+ .. Jcos3E+ ... +etn + ...
y=C3f2+Csf5 + ... +&y,+
+(Dyf2+ D, f4+ .. )sin 26 +(Eg f*+ .. )sind¢+ ...
+{(D3f3+ .. )cos 28+ ...
where A;, B;, C;, and D, are constants and where

&
1 +eké

f=

(18a)

{18b)

{18c)

in which ¢ and k are real constants to be determined. The terms y; and #; are of exponential
behavior. For small ¢, (18) is oscillatory but with a slowly changing monotonic envelope.

The function f is convenient to use since its derivatives have a simple form

V-
G = (hrmLp,

The expressions (18) are substituted into (5a) and these results are obtained

Cy=— (32“1)

28
A2 -1
T 8(AT—1+p/4)
16kD, (A% — 1) — A*(3k +2A4,)+ 5k + 24,
8(12—1+B/4) )

D2=

D3=

Furthermore y, is the complementary solution of (5a)
7= Fe™

where F, is a constant. The axial strain is

T
=1 = VI 0

2 k+ A
f fzc $26—|2kD,+ 2D+ +2 2113 sin 26+ 0(f%)

—?1

= e¥y)} -+~—4—2+O(/l'2)f2 cos 28+ k[14+O(A72)] f? sin 2E+O(f ).
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The constant 4,, which is unknown at this point, cancels from the leading term of the
coefficient of f3 sin 2&. Next the expressions (18) are substituted into (5b) with the results
k = [(2A%> =3a—3u)/32]?
A, = — (242 —9a+24p)/64k

A, = 304408
By = —3p/2'%—(a+9p)/28
2
N, = _AR fe *[sin E+0(A™Y)].

2xe
Hence the first significant-terms in the expansion for n are
n = (f+ A3 f3)sin(€ + @)+ A, f2 cos(E +¢) (19)

where ¢ is a constant which provides an appropriate phase shift to satisfy the conditions at
¢ = 0, while f is given by (18¢c). When ¢ is replaced by — £ in (19), a solution of (5) which
vanishes as £ - — oo is obtained. Thus (19) with £ replaced by |&| satisfies the conditions of
boundedness and continuity of n and n” (and y’). The continuity of ' is satisfied if ¢ is chosen
so that #'(0) = 0, i.e.

0= g—e(A2+k)+0(s3).

The continuity of y is satisfied by choosing
Fy = —C3—2D,(A,+k)+D; ~ ki?/2.
The discontinuity condition (3a) gives
n"(0) =~ 2ke?sin @ = A/2.
Thus
£ = (A/4k)}

and the leading terms in the expressions for the maximum curvature and strain are

T [1+0(%)]

_ &
max ’z_q

= (A/8kA 1+ 0(A)]
(T/EA)py = €2/4 = A/16k.

Thus the steady-state solution for the critical load speed indicates a response which varies
with the square root of the load in either situation of the geometric or material nonlinearities
dominant.

ELASTIC-PLASTIC SOLUTIONS

In this section the effects of plastic flow of the beam and foundation are considered.
For simplicity the effects of the geometric nonlinearities are neglected, only supercritical
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load speeds v > 1 are considered, and the plastic flow of the beam and foundation are
considered separately.

Plastic foundation
For the elastic beam on an elastic—perfectly plastic foundation the equation is

n" +2v°n" + F) = Ad(Z) (20)

where the relation between the deflection and the foundation force is shown in Fig. 2 for a
cycle of loading and unloading. A solution has the behavior indicated in Fig. 3. Ahead of
the load is the short-wavelength elastic wave train. The plastic flow occurs a distance I,
behind the load in a region of length I, — I, . Behind the yielding region, the foundation has
a permanent deformation #n, to which is added the long-wavelength elastic wave train.
Thus the solution is

C, sin wyé for £>0

C;sin wpé + C, cos w &+ Cs sin w,E+ Cq cos w,é for I, <é<0 1)
}7 =

<
_ ‘—;1-!;)—2(5+lz)2+'10+'l1—C8{1—cos[\/2v(é+12)]} for —1I, < &<~

L Mitnocoslw(S+1)]  for &< —1,.

The constants must be chosen so that#, 7', ", n”” are continuous, except for the discontinuity
at the load

1"(0%)=1"(07) = A

The above solution already satisfies the condition of zero velocity at the end of yielding
n'(=1) =0

F(m REGION OF
PLASTIC FLOW N
" Y
Tor 1

—T 5%
e T ‘-IH‘—
e

FiG. 2. Elastic-perfectly plastic foundation force. FiG. 3. Deformation of beam with supercritical load
speed on an elastic-plastic foundation.

The conditions at the load ¢ = 0 give the relations

Ce =0, C2=C4‘

a(wg - waz) )
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Continuity at £ = —1I, is satisfied if
No 1
Cy = —| 02 ——).
S 202)
This leaves five unknowns C5, C,,1,, ,, I, with which to satisfy the four continuity condi-
tions and the condition that n = 5, at the start of yielding £ = —I,. The conditions that

n = no and that n” is continuous give

—Cysinwyl; +C cosmyly, = no+Cssinw,l, 22)

. 1 .
—Cysinwyl, +C,4 cos wyl, = F|:%+C82v2 cos \/2u(l,—1;)— Csw? sin wall}
b

The right-hand sides must be equal which gives
i

2_

2

1)
) ¢ 2w
vsin w,l, = 1+w§—w§ [1—cosy/2v(l,—1))]

=1+0("%

where
A

Ve——"F"""—
wa(wg - wz)"lo

which is the ratio of the maximum deflection of the elastic solution (8) to the yield deforma-

tion of the foundation n,. Thus forv 2 2

sinw,l, = v!

Iy = 2vsin" 1yt

Similarly from the continuity of ' and n” comes the relations

Cycoswpl, +C,sinwyl, = —;{Cswa cos w,l;
b

JF%(I2 —1,)+ Cgr/20 sin[/20(1, — 11)]} (23)
v

and
Wy

veos w.l, = wy(l, *lx)m
2_

a

1
20 (0 — 55 (@} — 207
1. v (w., 202)(“’17 2v )Sin[\/zv(lz_ll)]
o2 V2, —1y)

= 0, —1)[1+0@™)].
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Thus for v = 2
o, —1) = vcosw,l,

= cotw,l; = (v —1)%
The right-hand side of the above equation (22) and (23) may now be evaluated
a(12 )

= Mog2 wiwi —w?)
1
2vz(w3—ﬁ) (2v? — w2} sin[\/20(l, — 1)
11 w?/2v(l,—1))

Cscos wyly +Cy sin wyl,

= no(v* = 1)*O(v™?)
1
Cl)f —2—2
—Cysinwyl, +C,coswpl, = —n, 2{l—cos V2o, = 1))}
b
= no0(v™°%).
Therefore, for v 2 2, C; and C, are negligible

C3, Cy = no(v* = 1H10(v ™).
The constants C, and C, are

w A
C,=C+-2C5 = '—————f— vi—-1D0(w ™3
1 3 @, s wb(wb ) ol )0(v™>)

w® B
= chs[l +0(v™ Y]

C,=C4= ’10("2— 1)*0(')_5}

The only remaining constant to be evaluated is#; . From the condition that n(—1[;) = 7,
n o= 4%02'(12—11)2+Cs{1 = cosly2u(l, = 1)]}

2

‘1[1 +00™%).

y
=N

Thus the solution (21) for v 2 2 is essentially

_\/—gv)—jsin(\/Zuf) for £¢>0
\/ Sm\/2v for —I, <¢<0
Totmi—p5@+L?  for —l<&< -l

1
ni+"o COS[?/Z_U(€+IZ)] for &< ~1,
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where
l, = J2vsin™1yv7! (25a)
l—1, = 200 = 1) (25b)
A
p= (25¢)
J2vmo

vi—1

=Mo" (25d)

Thus the bending wave ahead of the load is unaffected by the yielding of the foundation
behind the load.

For a comparison, if the impulse due to the moving load acting on each beam element
would act on all the beam elements simultaneously, then the beam will behave as a simple
mass on an elastic—plastic spring. The permanent deformation thus obtained is exactly the
same as in (24).

Plastic beam
The case of an elastic foundation with a beam, whose moment—curvature relation is the
elastic—perfectly plastic relation shown in Fig. 4, is now considered. The equation is

m'+20%" +1 = AS(&). (26)

Since a permanent curvature left in the beam by the load would cause unbounded dis-
placement at { = — o0, the path in Fig. 4 for a given beam element must be a closed cycle.
Thus one is led to the type of solution indicated in Fig. 5 in which the yielding occurs at the
two points £ = [, and I, . Plastic flow in an interval is not possible, since in the interval m
would be constant, leaving the solution of (26) for the interval with only two arbitrary
constants. Four arbitrary constants are required to satisfy continuity conditions. Since
rotary inertia is neglected, a discontinuity in curvature is permissible. For continuity of the
transverse shear, 7"
continuous while

"

must be continuous. Thus at ¢ = [, and [, the quantities n,n’,n” are

(7)) = —mg
n'(7) = —mo—m,
(7)) = mo—m,
n'(ly) = my
n"() = 0.
The solution is
( Z—ECOS wy(§—1y) for 1, <¢

’1 = Cl COSs wa(é_lz)'*'Cz cos w,,(f—lz) for ll < é < lz (27)
Cicosw,E+Cysinwil+Cssinw,é for 0< & <y

C;cos 0+ Cgsin w, & for £¢<0
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where the zero constants have been omitted. The conditions at ¢ = 0 give
c A

5T T 5y

wy(wj — of)

w
C6 = C4+ZU—bC5.

a

m(n"}

&ty

Y€l
S €<y
¢ — 7
//Im1 Mo
i e
E=12

FiG. 4. Elastic—perfectly plastic beam moment—curvature relation.

N POINTS OF
.y PLASTIC FLOW

% L_ lij/gv,
FLZ

Y

F1G. 5. Deformation of elastic-perfectly plastic beam on an elastic foundation with supercritical load speed.

The conditions at £ = [, give

m,
Ci=-——5_"—5
Wy — W,
m, mg
Cy=—t 470
5 .
2 2 (1)2

The conditions at £ = [, give the relations
2

@ sinwyl; = 1+—5"—=[1+(1+0) cos wy(l,—1,)—0 cos w,(l, —1,)]
Wy, — W,
= 0—(1+0) cos(wy(l, — 1))

@ coswyl; = —(1 +8)sin{w(l, —1,))

(282)

(28b)
(28c¢)
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C, = z—g 0 sin(w,(l, — 1)) sin @l +g§(¢ sin w,l; — 1) cos @, (28d)

a

C, = r_n_g((p sin wyl; — 1) sin w,l, —% 6 sin w,(l, —1,) cos w,l; (28e)
w? b

where ¢ is the ratio of the maximum bending moment of the elastic solution (8) to the yield
moment

A
* 7 (- obm
and 0 is
0 — m,w;

mo(w} —w?)

which involves the ratio m,/m, of the jump in curvature due to plastic flow to the curvature
at first yielding.

The three relations (28a, b, ¢) determine the three unknowns 6, /,, and I,. Note that
when ¢ = 1 exactly, the solution (8) is obtained. Generally, for 6 > 1, the evaluation is
difficult ; however for v 2 2, (28a) is

@ sin wyl; = 1+0((1+0)/v*).

Hence, if 0 < 1,

ply =sin"lop™l (0 < wyl; < 1/2). (29a)
Then (27¢) gives
sin wyll, —1,) = —("’12;01)% n < ofl,—1) < % (29b)
with which 0 can be obtained from (28b)
0= (p*—1)/4 ' (29¢)
Since for v 2 2
A
Y7 2imgw
0 =m/m,

(29¢) provides a simple relation between the load magnitude, the yield curvature and the
plastic flow. The remaining constants C; and C, are O(my/v?). Thus the solution (26) is
virtually the same as (8) for & < 0.

Plastic beam and plastic foundation

The load moving at a supercritical speed generates the long-wavelength train behind
and the short-wavelength train ahead of the load, according to the elastic solution (8).
The largest deflection occurs behind the load while the largest bending occurs ahead of the
load. Thus the plastic flow of the foundation, considered separately, occurs behind the
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load and does not affect the bending wave ahead of the load (24), while the plastic flow of
the beam is bending, considered separately, occurs ahead of the load but does not affect
the wave behind the load (26). Therefore if plastic flow of both beam and foundation are
considered simultaneously, the results (25) and (29) should not be significantly changed.

CLOSURE

From the preceding results the following conclusions are made.

The steady-state response varies with the square root of the load magnitude for the
critical load speed and so, for sufficiently small load magnitudes, is large in comparison
with the response for noncritical load speeds. Thus for the usual situation, the (undamped)
linear result for the transient behavior, as in [2], should be valid until the magnitude
approaches the smaller of the linear steady-state solution with (small) damping, as in [1],
or the present nonlinear steady-state solution.

For large load magnitudes, the first nonlinear correction terms indicate a maximum
strain larger than the linear result for all (noncritical) load speed, at least for the usual
situation of positive values of « and p, corresponding to softening elastic beam and found-
ation materials. Stiffening materials, with o and u negative, tend to decrease the maximum
curvature,

For plasticity effects for supercritical load speeds, the permanent deformation of the
foundation is essentially the same as when the entire beam is instantaneously given an
impulse equal to N/¥. No permanent bending deformation occurs. A closed cycle on the
moment-curvature diagram is transversed as the load approaches and then passes each
element of the beam.

Acknowledgements—A solution for a rigid—perfectly plastic beam, which led to the present elastic—plastic solution,
was suggested by G. B. Cline in informal discussion. Several errors in the basic equations were corrected by
the referees, one of whom brought to my attention Reference [5].
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Résumé—La solution “régime permanent” des équations rendues linéaires pour une poutre sur une fondation
élastique (sans amortissment) avec une charge se déplagant A une certaine vitesse, appelée vitesse “‘critique”,
n’existe pas. Dans cet exposé, des solutions de perturbation qui conviennent sont obtenus pour des équations
pour le mouvement i régime permanent qui comprennent des expressions non linéaires géométriques et relatives
au matériau. Des termes séculaires sont évités en utilisant 'expansion habituelle de Poincarré pour les vitesses
de charge inférieures aux vitesses critiques et une expansion de Lindstedt pour des vitesses supérieures aux
vitesses critiques qui peuvent étre étendues a la vitesse critique quand la condition non linéaire du matériau
domine. Toutefois aucune des deux expansions n’est valide pour la vitesse critique quand la condition non
linéaire géométrique domine, comme dans le cas d’une poutre trés fréle. Pour ce cas, une expansion satisfaisante
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se trouve qui donne une solution qui est principalement périodique (par rapport a la distance de la charge) mais
avec un lent décroissement monotonique dans I'enveloppe. Les résultats sont les premiéres corrections non linéaires
des solutions linéaires pour des vitesses de charge non critiques et la solution pour la vitesse critique qui donne
un effort qui varie avec la racine carrée de la charge. Pour indiquer ’effet de plasticité, une solution simple pour
des vitesses de charge supérieures aux vitesses critiques pour des matériaux pour poutres plastiques élastiques et
pour foundations est aussi obtenu. La solution consiste principalement dans les ondes élastiques mais avec une
région d’écoulement plastique de la fondation derriére la charge et deux points de limite élastique de la poutre
en pliant en avant de la charge.

Zusammenfassung—Die *‘Beharrungszustands”-Losung der linearisierten Gleichungen eines Balkens auf
elastischer Grundlage (ohne Dimpfung) mit einer Belastung die sich mit einer Geschwindigkeit bewegt die als
“kritisch” bezeichnet wird, gibt es nicht. In dieser Arbeit werden entsprechende Stérungslosungen erhalten,
die fiir Gleichungen des Beharrungszustandes gelten, die geometrische und materielle Unregelmassigkeiten
enthalten. Sdkulire Ausdriicke werden vermieden, durch Verwendung der iiblichen Poincare Expansionen
fiir sub-kritische Lastgeschwindigkeiten, sowie Lindstedt Expansionen fiir iiberkritische Geschwindigkeiten
die in die kritische Geschwindigkeit ausegedehnt werden konnen, wenn di Material-Nichtlinearitit iiberwiegt.
Keine der Expansionen gilt aber, fiir die kritische Geschwindigkeit wenn die geometrische Nichtlinearitit
iberwiegt, wie bei enem schlanken Balken. Fiir diesen Fall wird eine Expansion gefunden, mit einer Losung
die hauptsichlich periodisch ist (abhingig von der Entfernung der Last) aber mit einer langsamen monotonen
Abnahme der Hiillkurve. Die Resultate sind die ersten nichtlinearen Korrekturne der Linearlésungen fiir
nichtkritische Lastgeschwindigkeiten und Lésung der kritischen Geschwindigkeit, eine Spannung mit der
Quadratwurzel der Last variert. Um den Effekt der Plastizitat anzuzeigen wird auch eine einfache Lésung der
iiberkritischen Lastgeschwindigkeiten elastoplastischer Balken und Grundlagen-Materialien erhalten. Diese
Losung besteht hauptsichlich aus den elastischen Wellen, aber der plastische Bereich der Grundlage ist hinter
der Belastung und die zwei Fliesspunkte des Balkens in Biegung sind vor der Belastung.

A6crpakT—*‘YerolunBoe®’ pelleHUe JIMHEAPH30BaHHBIX ypaBHEHHMM id 6anku Ha YOPYTOMO CHOBaHMK
(6e3 peMnpupoBaHHA) C TPY3OM, IBHKYILHMMCA C HEKOTOPOH CKOPOCTBIO, OTHECEHHOE KaK ‘‘KpHUTHYecKas’’
CKOPOCTh, COBEPLICHHO He BO3MOXHO. B 3701 paboTe NonyyeHo yA0BIETBOPUTEIBHOE PEllICHHE BOIMYILECHHH
InS YPaBHEHHM YCTOMYMBOCTH ABHXEHHS, KOTOPhIE 3aK/IIOYAIOT TEOMETPUYECKME H MATEPHAJbHEIE
HeNHHeHHOCTH. Yhanock OOOMTH BEKOBbIE YIEHBI MCNONb3ys oObIuHBIE pa3sinoxeHdMs IlyaHkape ans
CKODPOCTel HHMXe KPHTHYECKOM, a pasnoxense JIMHACTEATa AMA CKOPOCTEH CBEPXKPHTHYECKHX, KOTODBIE
MOTYT OBITH pACHIMPEHBI Ha KPHTHYECKYIO CKODOCTh, B Ciy4Yae Koraa mnpeobrafaeT MaTepHanbHas
HeJIMHEHHOCTh. TeM He MeHee RMKAaXMe Pa3JIoKeHHsT HEBAXHBIE 1)1 KDHTHYECKHX CKOPOCTEi, B Cliydae xorna
npeobiagaeT reoMeTpUYECKad HEIMHEHHOCTE, a TAKKE Ui OYeHb rHOkol Ganku. B 3TOM ciyyae HaMOEHbI
YIOBIETBOPHTEILHLIE PA3NIOKEHHS, KOTODBIE NAlI0OT, B OCHOBHOM, [IEPMOIHYECKHE PEILeHHS (JIPLI PACCTOAHH
OT TIpy3a), HO C MEUIEHHBIM yMEHbIUEHHEM Ha orubarolueit. Pe3ynbraThl ABNAIOTCA MEPBOH HeIMHEHHOR
NONpaBKOK JWHeNHBIX PpelIeHHH A CKOPOCTeH C HEKPHTHYECKOM HATrpy3koH, a Takke ISl pelleHHS
KPHTHYECKOM CKOPOCTH, KOTOPas BLI3BIBAET NEPEMEILIEHHE, H3MEHAIOLIEECH C KBaAPATHLIM KOPHEM HArPY3KH.
JAna yxasauus mlacTHYeckoro 3bdekTa, MOMYyHEHO TaKkKe MPOCTOE PELUIEHHE, KACAIOLIEECS CKOPOCTeH
CBEPXKPHMTHYECKON HATpy3KH U1 ynpyromnacTHyeckoit 6aiku 4 MaTepudanoB ocHOBaHuSA. PellieHne COCTOMT,
IJ1aBHBIM 06pa3oM, U3 YIPYTHX BOJIH, HO ¢ PaiiOHOM IUIACTHYECKOTO TEYEHHS OCHOBaHMS 3a HArpy3koff
JIBYX MpeYeNiob TeKy4yecTy 6anku, npu uirude, 10 HArpPy3KH.



